
1

Data-Driven Compression and Efficient Learning of
the Choquet Integral

Muhammad Aminul Islam, Student Member, IEEE, Derek T. Anderson, Senior Member, IEEE,
Anthony J. Pinar, Member, IEEE, Timothy C. Havens, Senior Member, IEEE

Abstract—The Choquet integral (ChI) is a parametric nonlinear
aggregation function defined with respect to the fuzzy measure
(FM). To date, application of the ChI has sadly been restricted
to problems with relatively few numbers of inputs; primarily
as the FM has 2N variables for N inputs and N(2N−1 − 1)
monotonicity constraints. In return, the community has turned
to density-based imputation (e.g., Sugeno λ-FM) or the number
of interactions (FM variables) are restricted (e.g., k-additivity).
Herein, we propose a new scalable data-driven way to represent
and learn the ChI, making learning computationally manageable
for larger N . First, data supported variables are identified and
used in optimization. Identification of these variables also allows
us recognize future ill posed fusion scenarios; ChIs involving
variable subsets not supported by data. Second, we outline an
imputation function framework to address data unsupported
variables. Third, we present a lossless way to compress redun-
dant variables and associated monotonicity constraints. Last,
we outline a lossy approximation method to further compress
the ChI (if/when desired). Computational complexity analysis
and experiments conducted on synthetic data sets with known
FMs demonstrate the effectiveness and efficiency of the proposed
theory.

Index Terms—Data/information fusion, fuzzy integral, Choquet
integral, fuzzy measure, data-driven learning

I. INTRODUCTION

DATA/INFORMATION fusion is an enabling theory for
numerous fields, e.g., machine learning, signal/image

processing, big data, Internet Of Things (IoT), bioinformatics,
and cyber security, to name a few. In this paper, we focus
specifically on aggregation as the term fusion has been elusive
definition-wise (either too vague or overly specific). In general,
the idea is to combine N different inputs in such a way that
the overall result (typically a reduction from N inputs to one
result) is somehow better than the outcome acquired using
just the individuals by themselves. First, it is up to the user to
define “better”. For example, maybe the idea is to combine a
set of inputs to create a single result that can be more easily
visualized. The idea could also be to reduce (summarize)
data so it is more manageable. In machine learning, better
may mean achieving more generalizable decision boundaries
for classifiers. The point is, “better” is a concept that needs
to be specified relative to some task at hand. Next, focus
shifts to how to combine these N inputs. To date, most
mathematical approaches have focused on combining inputs
relative to the assumption of independence between them
(which is advantageous tractability-wise). However, often there
are rich interactions (e.g., correlations) between inputs that
should be exploited. But for N inputs, there are 2N possible
subsets to consider. As N grows, tractability is of utmost

concern. The focus of this paper is a new tractable way
to identify, model and exploit non-redundant data supported
interactions. The ideas are presented at an abstract level as to
not muddle the theory with any one particular application.

Herein, we focus on the fuzzy integral (FI) as it is a powerful
and flexible aggregation function capable of exploiting rich
interactions between inputs. In 1972, Sugeno introduced the
fuzzy measure (FM) (a normal capacity) in the context of
the Sugeno integral (SI) [1]. Though Sugeno coined the term
FI for his SI, the term FI has been generalized to a wider
class of integrals. One well-known example is the Choquet
integral (ChI), originally proposed by Gustav Choquet in 1953
[2]. While the ChI was initially used in statistical mechanics
and potential theory, in particular with respect to an additive
probability measure, it has since found application in numer-
ous other areas, e.g., computer vision [3, 4], classification
[5–10], pattern recognition [11–13], multi-criteria decision
making (MCDM) [14–20], control theory, forensic science
[21], Choquistic regression [22, 23], and multi-kernel learning
(MKL) for support vector machine (SVM) classification and
regression [24]. Numerous algorithms have been put forth to
learn the FI from data, e.g., quadratic programming (QP) [25],
gradient descent [26], penalty/reward [27], Gibbs sampler [28],
and linear programming [29], to name a few.

For N inputs, there are 2N FM variables and N(2N−1−1)
monotonicity constraints. An advantage of the FI is we can
model and exploit such knowledge. However, a drawback is
lack of tractability. In practice, this is an important and often
limiting factor. The community has been exploring ways to
solve this dilemma. The traditional approach is to require
or learn just the densities (measure on just the singletons)
and an imputation function is used to fill in the remaining
variables, e.g., Sugeno characteristic polynomial and resultant
λ-measure [30]. In a different approach, Grabisch defined
the k-order additive FM/FI [31]. The k-additive FM/FI is a
restriction limiting interactions to at most k inputs. It can
do this because the Mobius values for sets (variables) larger
than k are zero. Exploiting this property enables us to discard
FM variables and obtain a lossless compression. The k-order
additive measure is indeed efficient when k is much less than
the number of inputs. In many applications, e.g., MCDM, this
often proves to be sufficient and of great utility. However, in
other situations, e.g., pattern recognition, machine learning,
signal/image processing, and computer vision, to name a few,
we are often not dealing with humans per se versus automation
and notions like bounded rationality do not apply. It can, and
often is, the case that higher-order interactions exist and are

2

crucial. Last, even if we can determine the order k, many prob-
lems render k-additivity ineffective. For example, the heavily
utilized minimum and maximum aggregation operators–and
other linear combinations of order statistics (LCOS) at that–
are of N -order, requiring all 2N MT terms for the FM and FI
computation. Consequently, there is no savings in the number
of variables. On the contrary, the computational complexity
increases significantly, as the computation of the FI based
on the MT is highly dense (needs all 2N terms) verses
the conventional formulation of the FI (which needs only
N terms). In closing, density-based imputation and k-order
additivity have been explored to date and are applicable and
of great use for different problems/contexts.

Herein, we propose a new approach that scales to the prob-
lem size by adapting to available training data. Our approach
has four novel parts. First, data supported variables are identi-
fied and used in optimization. Identification of such variables
also empowers us to know about the existence of future ill
posed input scenarios; i.e., FI aggregations involving variable
subsets that could not be inferred from data and therefore we
should question. Second, we outline an imputation function
framework to address data unsupported variables. Third, we
present a lossless way to compress redundant variables and
associated monotonicity constraints. This is important with
respect to computation, memory storage and optimization.
Last, we outline a lossy approximation method to further
compress the ChI (if/when desired). In summary, our approach
is different in philosophy from density-based imputation and
k-additivity. However, our approach can be used to enhance
k-additivity if the goal is to learn it from data.

This work is driven by the fact that a single instance of
the FI for N inputs uses only N of the 2N FM variables.
Hence, we can learn at most min{2N ,M × N} variables
for a problem with M observations and N inputs. We know
from linear algebra that in order to obtain unique solutions
for 220 FM variables in a 20 input problem, we need at least
220 independent observations, which is more than one million
observations. While a problem with input sizes around 20 is
common, it is rare to find this huge number of samples for that
problem. Now suppose the problem has 1, 000 observations,
then at most (20 × 1, 000) = 20, 000 variables are needed,
when each observation is associated with unique set of vari-
ables, to represent the FI for all the observations. In reality,
the actual number of variables is far fewer because many
observations share variables among them. Another significant
advantage from using only the data-supported variables is that
it reduces the monotonicity constraints substantially, which
is exponential on the inputs for the full FI and, therefore,
can be a limiting factor in many solvers. A sophisticated
solver could possibly incorporate as many as 20, 000 variables,
however, handling more than one million variables along with
exponential order of constraints becomes near impossible for
any kind of modern day solver and computing platform.

Last, before we delve into related work and new methods,
an explanation of why we explore the QP for optimization is
given. One of the most commonly encountered error functions
in practice is the sum of squared error (SSE). This captures
how different our learned target function is to a ground truth.

However, other error and/or associated penalty functions can
and have been used relative to learning aggregation operators.
For example, in [32] Bustince et al. discussed problems related
to definitions of penalty functions in the context of data aggre-
gation. They gave examples of continuous penalty functions
based on spread measures including standard deviation and
variance and discussed the idea to define a penalty function for
non-monotonic aggregation function. In [33], we investigated
`p norm regularization to balance function error with minimum
complexity FMs. The message is, herein we focus on a generic
four step process for data-driven FI learning. The concepts
put forth can be used by different solvers, e.g., particle swarm
optimization, genetic algorithms, etc., based on a user’s desired
error and/or penalty function. Our focus is the four steps, not
a particular solver.

The remainder of this paper is arranged as follows. Section
II describes how to learn the FI, specifically the ChI, from
data that includes the full set of FM variables. Section III is
an example of a small problem to illustrate how the proposed
method works. Section IV details the proposed new methods
followed by experiments and analysis in Section V.

II. BACKGROUND

In this section, the ChI is defined and its QP-based op-
timization is outlined. Let X = {x1, x2, . . . , xN} be a set
of finite elements, which can be things like sensors, experts,
criteria or attributes in decision making, or algorithms in
pattern recognition. A discrete (finite X) FM is a monotonic
set-valued function defined on the power set of X , 2X , as
µ : 2X → R+ that satisfies

(i) Boundary condition: µ(∅) = 0,
(ii) Monotonicity: if A,B ⊆ X and A ⊆ B, µ(A) ≤ µ(B).

Often an additional constraint is imposed on the FM to limit
the upper bound to 1, i.e., µ(X) = 1. Throughout this paper,
we consider this condition for simplicity and convenience,
which is useful in contexts like decision-level fusion.

Consider a training data set containing M pairs of observa-
tions and labels, i.e., O = {(oj , yj)} , j = 1, 2 . . . ,M , where
oj ∈ RN is the jth observation, yj ∈ R is the associated label,
and oj(xk) corresponds to the observed value for jth instance
and kth input. Let u = [µ({x1}), µ({x2}), . . . , µ(X)]T be the
2N − 1 dimensional vector of FM variables except µ(∅). The
discrete (finite X) ChI on oj with respect to the FM µ is

Cµ(oj) =

NX
i=1

[oj(xπj(i))− oj(xπj(i−1))]µ(Sπj(i)), (1)

where πj is a permutation function for observation oj on the
indices that satisfies 0 ≤ oj(xπ(1)) ≤ . . . ≤ oj(xπ(N)), where
Sπj(i) =

�
xπj(i), xπj(i+1), . . . , xπj(N)

	
and oj(xπj(0)) = 0

[34]. Eq. (1) can be written in matrix form as Cµ(oj) = cTj u,
where cj is a column vector containing the (2N − 1) coef-
ficients for observation oj . Let k be the index of variable
µ(B ∈ 2X) in u. Then the kth element of cj is cjk =
oj(xπj(l)) − oj(xπj(l−1)) if ∃Sπj

(l) = B, l ∈ {1, . . . , N},
and 0 otherwise. The FM monotonicity constraints can be
written as µ(A) ≤ µ(B),∀A,B ⊆ X and A ⊆ B.
The set of monotonicity constraints defined by the above

3

inequality relations are exhaustive; however, there are many
redundant constraints among them which can be excluded
for an optimization problem. For example, if we include
µ({x1}) ≤ µ({x1, x2}) and µ({x1, x2}) ≤ µ({x1, x2, x3}) as
monotonicity constraints, then they also imply that µ({x1}) ≤
µ({x1, x2, x3}), and there is no need to explicitly define all
the relations. The minimal set of constraints for an FM is
µ(A) ≤ µ(A ∪ q),∀A ⊂ X and ∀q ∈ X, q /∈ A.

The SSE between the ChI for all the observations in the
training data, O, and our labels is [25, 35]

E(O,u) =

MX
j=1

(Cµ(oj)− yj)2 =

MX
j=1

(cTj u− yj)2

=

MX
j=1

(uT cjc
T
j u− 2yjc

T
j u + y2j). (2)

Based on this, the least square minimization problem can be
expressed as [25, 35]

(OP1) min
u
fO(u) = uTHu + dTu,

µ(A) ≤ µ(A ∪ q), ∀A ⊂ X and ∀q ∈ X, q /∈ A,
(monotonicity conditions) (3a)

µ(∅) = 0, (boundary conditions) (3b)
µ(X) = 1, (normality conditions) (3c)

H =

MX
j=1

cjc
T
j and d = −2

MX
j=1

yjcj .

III. EXAMPLE 1: DATA SUPPORTED VARIABLES

In this section, we provide a simple numeric example of the
underlying principle of the proposed method for a simple three
input case (N = 3). Figure (1) shows the true underlying FM.
Table I is an example training data set, O, with 5 instances
and labels, drawn randomly from the true underlying FM.

Example 1 has seven variables, denoted by u, and five
instances (training data). According to Eq. (1), the ChI for
each instance requires FM variables for three sets, Sπj(i), i =
{1, 2, 3} (column four in Table I). In Example 1, only six of
the seven variables, denoted as uP , are encountered–shown
in column five of Table I. Let us denote the unused variable,
µ({x2, x3}), as uQ. We can split the structure in Figure (1)
into two based on the variables, uP and uQ (Figure (2)).
The variables uP can be learned by solving an optimization
problem with only uP as there are five unique ChI equations
for five variables, and µ(X) is constant. On the other hand,
there is no ChI equation involving uQ, and its value can be
anywhere in the valid range, which is obtained using uP and
the monotonicity constraints on uQ. An imputation function,
discussed in detail later, can be employed to assign a specific
value within the interval range.

IV. EFFICIENT CHI LEARNING

A. Optimization with respect to just data supported variables

Based on our training data, we can partition the FM
variables into two parts. The first set, P ⊆ 2X , specifically

Fig. 1. Example 1. Illustration of known (aka reference) FM for three inputs
(N = 3). Nodes are variables and edges are monotonicity constraints.

P =
�
Sπj(i)

	
,∀i ∈ {1, 2, . . . , N} and ∀j ∈ {1, 2, . . . ,M},

is all variables that appear at least once in the ChI formula
with respect to O (oi, i = 1, . . . ,M) and the second set,
Q = 2X \ P , is all other variables. Let the cardinality of P
and Q be p and q respectively. The partitioning of the power
set leads to the decomposition of the vector u; u = [uP uQ],
where uP (l) = µ(A), A ∈ P, l = {1, 2 . . . , p}, and uQ(k) =
µ(B), B ∈ Q, k = {1, 2 . . . , q}. The coefficient vector cj for
each observation oj is cj = [cPj cQj]

T , where cPj and cQj
are the respective coefficient vectors of uP and uQ for the
given observation. As the variables uQ are not present in the
ChI definitions of all the observations, their coefficients in the
quadratic formula with respect to the training data are always
zeros, i.e., cQj = 0, ∀j ∈ {1, 2, . . . ,M} .

The objective function in OP1 consists of a quadratic term
with a coefficient matrix H and a linear term with coefficient
vector d. These can be represented in terms of the observation
coefficients, and thus can be partitioned into blocks. The
coefficient matrix, H , is therefore

H =

MX
j=1

cjc
T
j =

MX
j=1

�
cPj
cQj

�
[cTPj cTQj]

=

mX
j=1

�
cPjc

T
Pj cPjc

T
Qj

cQjc
T
Pj cQjc

T
Qj

�

=

�
2
PM
j=1 cPjc

T
Pj 0PQ

0QP 0QQ

�
=

�
HPP 0PQ
0QP 0QQ

�
, (4)

where 0QP is a Q × P matrix of all zeros and HPP =

2
PM
j=1 cPjc

T
Pj . Similarly, the coefficient vector d can be

represented as

d = −2
MX
j=1

yj

�
cPj
cQj

�
=

�
−2
PM
j=1 yjcPj
0Q

�
=

�
dP
0Q

�
,

where 0Q is a Q × 1 vector of all zeros and dP =

−2
PM
j=1 yjcPj . We can see from the alternate representation

4

TABLE I
EXAMPLE 1: TRAINING DATA-SET FOR A THREE INPUT CASE (N = 3).

Training data (O) Sπj(i) Used variables—uP Unused variables—uQIndex (j) Observations (oj) Labels (yj) i = 1 i = 2 i = 3
1 0:6 0:5 0:1 0:41 {x1} {x1; x2} X

�({x2; x3})
2 0:4 0:3 0:8 0:58 {x3} {x1; x3} X �({x1}); �({x2}); �({x3});
3 0:9 0:2 0:7 0:66 {x1} {x1; x3} X �({x1; x2}); �({x1; x3});
4 0:5 0:6 0:3 0:48 {x2} {x1; x2} X and �(X)
5 0:6 0:2 0:7 0:57 {x3} {x3; x1} X

𝜇(𝑥1, 𝑥2) 𝜇(𝑥1, 𝑥3)
= 0.8

𝜇(𝑥1) 𝜇(𝑥2) 𝜇(𝑥3)

𝜇(𝑋) = 1

𝜇 𝑥2, 𝑥3
= 0.9

𝜇(𝑥2)
= 0.4

𝜇(𝑥3)
= 0.5

𝜇(𝑋) = 1

0.7 0.8

0.3 0.4 0.5

[0.5,1]

(a)

𝜇(𝑥1, 𝑥2) 𝜇(𝑥1, 𝑥3)
= 0.8

𝜇(𝑥1) 𝜇(𝑥2) 𝜇(𝑥3)

𝜇(𝑋) = 1

𝜇 𝑥2, 𝑥3
= 0.9

𝜇(𝑥2)
= 0.4

𝜇(𝑥3)
= 0.5

𝜇(𝑋) = 1

0.7 0.8

0.3 0.4 0.5

[0.5,1]

(b)

Fig. 2. Example 1. (a) Illustration of required FM values for data in Table I. Note, �({x2; x3}) is not supported by training data and subsequently cannot be
learned. (b) Illustration of data unsupported values and their interval-valued ranges due to monotonicity conditions. The values/intervals outside nodes signify
that they are learned via optimization whereas those inside are used as constants.

of the coefficient matrix H in Eq. (4) that the diagonal blocks
of the matrix are zeros. This indicates that variables uP and
uQ in the quadratic terms are decoupled, and consequently
the objective function can be represented as a linear sum of
two functions with variables uP and uQ. That is, fO(u) =
fO(uP ,uQ) = fO1

(uP) + fO2
(uQ).

Furthermore, the constraints can be divided into groups with
respect to uP and uQ. For sets A,B ∈ 2X , we have the
following four cases: (1) µ(A), µ(B) ∈ uP , (2) µ(A), µ(B) ∈
uQ, (3) µ(A) ∈ uP , µ(B) ∈ uQ, and (4) µ(A) ∈ uQ, µ(B) ∈
uP . The boundary constraints can also be grouped based on:
(1) µ(A) ∈ uP and (2) µ(A) ∈ uQ. Now, we rewrite the
optimization problem in OP1 in terms of uP and uQ,

(OP2) min
uP ,uQ

fO(uP ,uQ) = uTPHPPuP + uTP0PQuQ+

uTQ0QPuP + uTQ0QQuQ + dP
TuP + 0QuQ,

= (uTPHPPuP + dP
TuP)| {z }

≥0, terms with only uP

+

uTP0PQuQ + uTQ0QPuP| {z }
=0, terms with both uP and uQ

+uTQ0QQuQ + 0QuQ| {z }
=0, terms with only uQ

, (5)

subject to: (1) µ(A) ≤ µ(B) for µ(A), µ(B) ∈ uP and A ⊂
B, (2) µ(A) ≤ µ(B) for µ(A), µ(B) ∈ uQ and A ⊂ B, (3)
µ(A) ≤ µ(B) for µ(A) ∈ uP , µ(B) ∈ uQ and A ⊂ B, (4)
µ(A) ≤ µ(B) for µ(A) ∈ uQ, µ(B) ∈ uP and A ⊂ B, (5)
µ(A) ≥ 0,∀µ(A) ∈ uP , (6) µ(A) ≥ 0,∀µ(A) ∈ uQ, and (7)

µ(X) = 1, where A,B ∈ 2X . It is obvious from OP2 that
all the terms with uQ in the objective function are zeros, and
all the constraints involving both uP and uQ are inequality
relations. That is, uP does not depend on uQ, but rather the
opposite. Therefore, we can optimize uP first and then use its
result to obtain values for uQ. As such, we break OP2 into
two sequential tasks, OP2.1 and OP2.2, where

(OP2.1) min
uP

fO1
(uP) = uTPHPPuP + dTPuP ,

subject to µ(A) ≤ µ(B) for µ(A), µ(B) ∈ uP , µ(A) ≥
0 for µ(A) ∈ uP , µ(X) = 1, where A,B ∈ 2X .

The second step, OP2.2, is concerned with uQ and is based
on constraints defined by the uP values learned in OP2.1,

(OP2.2) min
uQ

fO2
(uQ) = uTQ0QQuQ + 0QuQ = 0,

subject to a valid FM in [0, 1],

µ(A) ≤ µ(B) for A ⊂ B and µ(A), µ(B) ∈ uQ, (6a)
µ(A) ≤ µ(B) for A ⊂ B and µ(A) ∈ uP , µ(B) ∈ uQ,

(6b)
µ(A) ≤ µ(B) for A ⊂ B and µ(A) ∈ uQ, µ(B) ∈ uP ,

(6c)
µ(A) ≥ 0 for µ(A) ∈ uQ, (6d)

where A,B ∈ 2X . It is worthwhile to note that OP2 includes
the exhaustive set of monotonicity constraints and extended

5

list of boundary constraints only to facilitate our partitioning
of the inequality constraints so we can decompose OP1.
Instead of enumerating all possible monotonicity conditions,
we instead define the monotonicity constraints, e.g., Eq. (3a) in
the standard QP formulation, with the minimal set of relations
excluding all redundant constraints. In the same manner, the
boundary conditions can be scaled down, reducing the number
of constraints considerably in both OP2.1 and OP2.2.

Since OP2.2 is a 0-valued objective function, it is in effect
a constraint satisfaction problem that can be wrote as

(OP2.2a) find uQ subject to MC(uQ) (7)

where MC(uQ) denotes the constraints in Eqs. (6a-d). The
valid region defined by these constraints is a convex bounded
polyhedron in a q-dimensional space denoted by CQ, where q
is the cardinality of uQ. Any point inside CQ is valid; therefore
the whole convex polyhedron constitutes the solution set of the
problem. Obviously, the problem has infinitely many solutions.

Our constraints can be further decomposed. Group I is unary
constraints (Eqs. (6b-d)) since they include constants and
variables from uP , which are themselves constants. In Group
II, the constraints are binary with uQ variables on both sides of
the inequalities (Eq. (6a)). First, we consider the case of only
Group I constraints. As these constraints specify that a variable
is either less or greater than some constant, the hyper-lines for
these constraints run parallel to the axes of a q-dimensional
space. The resultant solution set for uQ, C̃, is therefore
a hyper-rectangle with 2q vertices. Alternately, we can say
that the valid range of each variable with regard to Group I
constraints lies in an interval. Let I(x) = [il(x), iu(x)] be the
interval for variable x = µ(A) ∈ uQ, which can be deduced
from Group I constraints as il(x) = max(B⊂A,µ(B)∈uP) µ(B)
and iu(x) = min(B⊃A,µ(B)∈uP) µ(B). It is trivial to show
that if µ(E), µ(F) ∈ uQ, and E ⊂ F , then il(µ(E)) ≤
il(µ(F)) and iu(µ(E)) ≤ iu(µ(F)) because each subset of
E is also a subset of F and each superset of F is also
a superset of E. Substituting the unary constraints with in-
tervals, OP2.2a can be rewritten as; find uQ subject to (i)
µ(A) ≤ µ(B) for A ⊂ B and µ(A), µ(B) ∈ uQ and (ii)
il(µ(A)) ≤ µ(A) ≤ iu(µ(A)), µ(A) ∈ uQ. The solution set,
CQ, is a subset of C̃ constrained by (i), which means that
a valid point within CQ can be obtained from intervals by
satisfying the monotonicity constraints on uQ.

In Section IV-C, we put forth an approach that allows
data-unsupported variables to be computed on demand; hence
we do not need to store or identify the valid region ex-
plicitly. That approach is based on the following concept.
If ∀A,B ∈ Q, if A ⊂ B then the interval calculated
using Group I constraints always yields I(A) ≤ I(B) or
il(A) ≤ il(B) and iu(A) ≤ iu(B). While C̃ can have a
region over which µ(A) > µ(B), the solution set, CQ, does
not contain any such region. Therefore, we can formulate a
function, fI , that maps an interval I in [0, 1] to a point in the
interval, i.e., fI(I) ∈ I , such that for any Ii < Ij , fI always
preserves the relation fI(Ii) ≤ fI(Ij).

B. Computational Complexity

Here, we provide the computational complexity of the QP
learning of data-supported variables. With training data of M
samples for an N inputs problem, each observation can add at
most N variables, and the total number of training variables
in the efficient ChI, nE , can reach to 2N − 1 variables at
maximum for an overdetermined system. On the other hand,
the number of training variables, nS , in conventional ChI
always is 2N−1 regardless of the training sample size. That
is, nE ≤ min{M × N, 2N − 1} and nS = 2N−1. In a
scenario when M × N < 2N−1, the worst case value for
nE is, nE(worst) =M ×N < 2N−1 = nS . This implies that
the worst case time complexity of the efficient ChI is less than
the standard ChI when M × N < 2N − 1 (or M < 2N−1

N)
and is equal when M ≥ 2N−1

N , at which point the two
methods converges to exactly the same problem with 2N−1

variables. In reality, the number of observations for large N
does not vary exponentially with N , but rather polynomially.
For instance, we rarely encounter a 20 input problem with
220 observations, but we face problems whose number of
observations can be modeled as (c · 20x), where c and x are
arbitrary constants. As the time complexity of a convex QP
is on the order of O(k3) for k variables, our complexity is
O((MN)3) = O(N3(x+1)), where M = Nx. That is, we
have polynomial time complexity under the assumption that
the number of observations is polynomial with respect to N .

C. Imputation of data unsupported variables

Section IV-A showed that data supported variables in OP2.1
are scalars and that data unsupported variables lie in a convex
bounded polyhedron defined by these scalars and the mono-
tonicity conditions on the data unsupported variables. The
focus of this section is a framework for assigning values (via
an imputation function) to data unsupported variables based on
the results of OP2.1 and external knowledge. First, we remark
on a few important high-level considerations.

Remark 1. Should I impute? In all data-driven ChI learning
work that we are aware of, optimization is with respect to
data supported and unsupported variables. However, what is
really being assigned to those data unsupported variables and
should we “trust” future decisions (fusions) that rely on one
or more of these data unsupported variables? Unlike prior
work, this paper informs the reader about how to identify
such ill-posed fusion scenarios. Beyond that, it is ultimately
up to the user/system to decide what to do. One strategy is to
not fuse. Another is to fuse but report that data unsupported
variables were used. Herein, we explore the decision of fusing
using data supported variables and a philosophy that lets us
control unsupported variable value assignment, versus making
it arbitrary or a side effect of the optimization algorithm.

Remark 2. How is data-driven imputation different from
density-driven imputation? Technically, imputation is the
mapping of interval-valued uncertainty to scalars for variables
unsupported by data (or densities respectively). By definition,
we are not privileged to know the “true” answer to data
(or density) unsupported variables. This is the reality and

6

type of problem with which we aim to advance. In density-
based imputation, there are 2N − 2 − N free (or density
unsupported) variables. These variables have interval-valued
uncertainty and a philosophy such as Sugeno’s characteristic
polynomial or a S-Decomposable measure is required for
scalar assignment. In the context of our current paper, we are
privileged to know (from data) much more than just the den-
sities. Each observation highlights N variables of increasing
cardinality (µ(

�
xπj(1)

	
), µ(

�
xπj(1), xπj(2)

	
), ...). Relative to

density-driven, data-driven imputation reduces the number of
and narrows the interval widths of data unsupported variables.

Remark 3. How does data-driven imputation relate to k-
additivity? In k-additivity, a subset of variables–those whose
cardinality is greater than k–are, or are forced to be, irrelevant
relative to the problem at hand. What this means is no impu-
tation occurs. However, in our data-driven approach variables
are selected at each level of cardinality. No assumption is made
with respect to if a problem is k-additive or not. Therefore,
imputation is needed to fill in that which we do not know
(that which is not observable). It is important to note that k-
additivity and data-driven imputation are not “in competition”.
They are different tools. If a problem is k-additive and the
desire is to learn it from data, then our four step approach can
be combined with k-additivity.

Next, we outline an initial approach to data-driven imputa-
tion. However, imputation–deciding how to address that which
we are not truly privileged to know–is a broad topic that is
application/domain specific and the subject of numerous future
works. Our intent here is to outline different initial approaches
for the purpose of equipping the reader with options to explore
relative to their task. We consider two different approaches.
The first is where we specify the philosophy, e.g., expected
value, optimistic or pessimistic. For example, an extreme
case of a pessimistic philosophy would be to always select
the lower interval value for each data unsupported variable
interval. This imputation function models the belief that we
are unwilling to assign any more utility to increasing subsets
of inputs than what we observed in the data. The first approach
requires the user to know something about the problem, to
have some fundamental ideology that they wish to follow, or
different approaches can be attempted and a winner selected.
Our second initial idea is to take a machine learning approach
like cross validation to help learn the imputation function.

(Approach 1) Modeling: Our geometric interpretation of
the solution set for data unsupported variables informs us that
if a function maps an interval to a scalar in that interval and
if that function is also non-decreasing then it will always
select a point in the valid solution space and the resultant
FM will be monotone. Specifically, an imputation function,
fI(I = [il, iu]), should possess the following properties; (i)
il ≤ fI(I) ≤ iu and (ii) the sub-gradients with respect
to interval boundaries, il and iu, are non-negative for all
intervals, I , i.e., ∂fI

∂il
≥ 0, ∂fI

∂iu
≥ 0. The conundrum is,

there is an infinite number of such real-valued functions.
For sake of tractability, we explore three different types of
functions (optimistic, pessimistic and expected value like) that
are convex combinations of our data unsupported variable

interval endpoints,

fwI
(I) = (1− wI)il + wI iu, s.t., wI ∈ [0, 1] (8)

In the Appendix, we prove that Eq. (8) satisfies the conditions
of an imputation function for a monotonic wI w.r.t I .

(Case 1) Fixed: In our first case, wI is a constant and
fwI

(I) is therefore simply a linear combination of the interval
endpoints. For example, if wI = 0 we obtain fwI=0(I) = il.
If wI = 0.5, we take the expected value with respect to our
observed (data supported) evidence. Furthermore, wI = 1 is
an optimistic assignment, i.e., fwI=1(I) = iu.

(Case 2) Dynamic: In case 2, the idea is to not use a constant
wI . Instead, we select a “pivot point” (single value that
characterizes our interval) according to zI(I) = (1−β)il+βiu,
where β is a user/system constant. Next, wI is calculated using
zI(I). The goal is to allow for a non-linear inflation and/or
deflation based on the exact value of zI(I). For example, if
zI(I) is “large” (“small”), e.g., 0.9 (0.1), then we might desire
to inflate (deflate) our value versus what we linearly obtain in
Case 1. One example is the Sigmoid (see Appendix for proof)

wI(zI(I)) =
1

1 + e−a(zI(I)−b)
, (9)

where a and b are user/system parameters.
(Approach 2) Machine learning: Last, we discuss how fI

can be learned from data by fitting the function to the learned
variable, uP . There are at least two ways to accomplish this;
(i) solve an optimization problem based on a criteria like the
SSE relative to the functions parameters or (ii) use a Hermite
interpolation method to model this data with a monotonic
piece-wise polynomial function [36]. The parameters of a dy-
namic weight function, wI , can be learned from uP following
the below steps: First, determine the interval I(x) for each
variable, x ∈ uP as if its actual value is unknown. That is,
treat x as a variable while others as constants with known
values and use the monotonicity constraints along with values
of uP \ x to obtain the interval. Next, calculate zI according
to zI(I(x)) = (1 − β)il(x) + βiu(x) relative to a fixed β.
Then, compute wI (Eq. (8)) with the value of zI calculated
in the previous step and fI(I) as the actual (learned) FM
value for variable x ∈ uP . Last, fit a monotonic function of
wI (e.g., sigmoid function in Eq. (9)) or piecewise monotonic
polynomial function on the data zI vs. wI(I) to estimate its
parameter. As the weight in the fixed imputation function can
be modeled as wI(zI) = c, therefore, it can also be learned in
the same manner described above. Note, bisection method can
be used to select an appropriated value for β in zI equation,
however, a fixed value of 0.5 was used in our experiments.

D. Lossless and lossy FM compression (variable elimination)

An imputation function does more than just help us build a
real-valued FM. For same or approximate valued FM variables
in uP , some variables can be removed and their exact or
approximate values can be retrieved using the monotonicity
constraints and imputation function.

Suppose the sets, for which the FM value is the same, say
value a, comprises a family of sets, V , i.e., µ(v) = a,∀v ∈
V ⊂ 2X . Now, assume that the sets, ∅ and X , are themselves

7

their subset and superset respectively. Then V can be divided
into three mutually exclusive families of sets:

1) VM : Each element in VM has at least one superset and
one subset in V ,

∀r ∈ VM ,∃s, t ∈ V, s ⊂ r ⊂ t.

2) VL: Each element in VL has at least one superset but no
subset in V ,

∀r ∈ VL,@s ∈ V ⊂ r and ∃t ∈ V ⊃ r.

3) VU : Each element in VU has at least one subset but no
superset in V ,

∀r ∈ VL,∃s ∈ V ⊂ r and @t ∈ V ⊃ r.

With respect to the above sets, the valid interval range
for variables defined for each member set in VM can be
derived from those in VL and VU respectively, and the in-
terval will have the same lower and upper bounds, a, i.e.,
∀v ∈ VM , i.e., ∃vl ∈ VL,min(µ(v)) = µ(vl) = a and
∃vu ∈ VU ,max(µ(v)) = µ(vu) = a. The variables for VM
can be removed, and their FM values can be recovered by any
imputation function using the information only for VL, VU , and
the monotonicity constraints. Next, without loss of generality,
we illustrate FM variable compression for three cases.

Min aggregation: The FM values for the min aggregation
operator for an N -input system are µ(A) = 0,∀A where A ⊂
X, and µ(X) = 1, where V includes all the sets in the power
set except X . VU includes only those sets with cardinality
N−1, VU = {B} ,∀|B| = N−1, and VL is empty. Therefore,
VM = V \ (VL ∪ VU), |VM | = 2N − N − 1, and in total
2N − N − 1 variables can be removed. Figure 3(a) shows,
as an example, the full set of FM variables for a 3-input
system on the left side and the compressed FM variables on the
right. Only four variables, for VL and X , are required for any
imputation function to recover the remaining three. However,
irrespective of problem size, the min imputation function needs
only one variable, µ(X), which is by definition a constant.

Max aggregation: This operator for an N -input system is
characterized as µ(A) = 0, if A = {∅}, else µ(A) = 1,
where A ⊆ X . With the same analysis as for the min, we get
VL = {B} ,∀|B| = 1, VU = ∅, and VM = {B}∪∅,∀|B| = 1,
which suggest that only N +1 variables for the N singletons
and the empty set, µ(x) = 1 where x ∈ X, are needed for
computing the ChI of any observation. Figure 3(b) depicts the
variable compression process for a 3-input max aggregation
operator. We need to store only four variables, which can be
further reduced to one when max imputation function is used.

Binary FM: An example of an arbitrary FM is shown in
Figure 3(c). Of eight variables, four are 0-values and rest are
1-valued. Based on their values, these variables are partitioned
into two clusters, V1 and V2, where V1 contains 0-valued
variables and V2 has 1-valued variables. Using any imputation
function, four variables can be removed, two from each cluster.

The above examples demonstrate the fact that we can reduce
the number of variables significantly in a lossless way when a
group of variables share the same value. In application, due to
finite floating precision in computation, or simply to further

reduce the number of required variables, we might want to
incorporate a tolerance (ε) while removing variables, i.e.,

max(µ(v))−min(µ(v)) ≤ ε, ∀v ∈ V, and ε > 0. (10)

Note, Equation (10) is a lossy operation that yields ChI error.

V. EXPERIMENTS

The aim of this section is to conduct controlled experiments,
meaning we know the answer and can therefore precisely
study different conditions, and to also compare the proposed
method to relevant existing work. We do not use “real data
sets,” e.g., benchmark machine learning data sets, because we
do not know what the “true” required aggregation strategy
is or if there is even one (i.e., maybe a single input is
sufficient). Instead, we focus on synthetic experiments because
they allow us to explore a wider and richer range of condi-
tions to demonstrate, confirm and learn about the theory put
forth. Their results also therefore obviously trickle down into
associated applications, e.g., computer vision, MKL, MCDM,
etc. The following four experiments are performed. First, we
investigate the impact of using only the data supported FM
variables for learning versus using all FM variables. Second,
we highlight similarities and differences to k-additivity. Third,
we demonstrate how the proposed method can be used to
efficiently represent and learn a relatively large scale problem
(meaning otherwise considered intractable with respect to most
modern computing platforms), N = 20. Last, we perform an
experiment to show the impact of further compressing the FM
by grouping similar valued FM variables.

Data herein is generated (pseudo-)randomly from a uniform
distribution. In experiments 1, 2 and 3, N = 10 is used,
which yields 1, 023 FM variables and 5, 110 monotonicity
constraints. The reason for N = 10 is because it is tractable
(computationally and memory storage wise) by most solvers
on modern day general purpose hardware. However, N larger
than 10 quickly becomes difficult to solve—or already is more-
or-less intractable. However, we could obviously increase N
if high performance computing hardware is available and
the trends that we report below transfer without loss of
generality. In addition, picking a “loadable” N allows us
to compare our method to all of the k-additive solutions
(different k’s) and the full FI using all FM variables (no
restrictions). Five thousand samples were generated. All but
the fourth experiment is ran for training sample sizes of
15, 30, 75, 150, 300, 1000, and 3000 to show important
trends associated with different sample sizes. For each sample
size, the training samples are selected (pseudo-)randomly from
the data set of five thousand, the FM values are learned and
then tested on the remaining observations. First three exper-
iments are repeated 100 times while the last experiment is
repeated 10 times for different selections of training samples,
and the average is taken with respect to our performance met-
rics, the mean of squared error (MSE) (plotted on logarithmic
scale in the figures) and the number of training variables used.
Three thousand were selected specifically because it ensures
that the system is overdetermined and has enough data to learn
accurately all the variables in training (relative to N = 10).

8

𝝁(𝒙𝟏, 𝒙𝟐)
= 𝟎

𝝁(𝒙𝟏, 𝒙𝟑)
= 𝟎

𝝁 𝒙𝟐, 𝒙𝟑
= 𝟎

𝝁(𝒙𝟏)
= 𝟎

𝝁(𝒙𝟐)
= 𝟎

𝝁(𝒙𝟑)
= 𝟎

𝝁(𝑿)
= 𝟏

𝝁 ∅
= 𝟎

𝝁(𝒙𝟏, 𝒙𝟐)
= 𝟎

𝝁(𝒙𝟏, 𝒙𝟑)
= 𝟎

𝝁 𝒙𝟐, 𝒙𝟑
= 𝟎

𝝁(𝑿)
= 𝟏

V = set of
variables
with value 0

𝑽𝑼 = set of those
variables that have
no superset
variables in V

Full set of FM variables Compressed FM variables

𝑽𝑳 = ∅

𝑽𝑴 = 𝑽 \ 𝑽𝑼 ∪ 𝑽𝑳

𝑽𝑴 removed

𝑽𝑳 = ∅

𝑽𝑼

(a)

𝝁(𝒙𝟏, 𝒙𝟐)
= 𝟏

𝝁(𝒙𝟏, 𝒙𝟑)
= 𝟏

𝝁 𝒙𝟐, 𝒙𝟑

= 𝟏

𝝁(𝒙𝟏)
= 𝟏

𝝁(𝒙𝟐)
= 𝟏

𝝁(𝒙𝟑)
= 𝟏

𝝁(𝑿)
= 𝟏

𝝁 ∅
= 𝟎

V = set of
variables
with value 1 𝑽𝑳 = set of those

variables that have no
subset variables in V

Full set of FM variables Compressed FM variables

𝑽𝑼 = ∅

𝑽𝑴 = 𝑽 \ 𝑽𝑼 ∪ 𝑽𝑳 𝑽𝑴 removed

𝑽𝑳

𝑽𝑼 = ∅

𝝁(𝒙𝟏)
= 𝟏

𝝁(𝒙𝟐)
= 𝟏

𝝁(𝒙𝟑)
= 𝟏

𝝁 ∅
= 𝟎

(b)

(c)

Fig. 3. Example of lossless compression (redundant variable elimination) of the FM for (a) min, (b) max, and (c) arbitrary binary FM for N = 3 system.

